Math 10B - Calculus of Several Variables II
Quiz 2
April 22, 2011

Name: \qquad

Total
$/ 10$

Evaluate the integral:

$$
\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{1}^{3} \rho^{2} \sin \varphi d \rho d \theta d \varphi
$$

Extra credit: Thinking of this as an integral in spherical coordinates, what is the region it gives the volume of? (The extra credit will not raise your quiz score past 10/10.)

Solution.

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{1}^{3} \rho^{2} \sin \varphi d \rho d \theta d \varphi & =\left.\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\frac{1}{3} \rho^{3}\right)\right|_{1} ^{3} \sin \varphi d \theta d \varphi \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi}\left(9-\frac{1}{3}\right) \sin \varphi d \theta d \varphi \\
& =\frac{26}{3} \int_{0}^{\pi} \int_{0}^{2 \pi} \sin \varphi d \theta d \varphi \\
& =\left.\frac{26}{3} \int_{0}^{\pi} \theta\right|_{0} ^{2 \pi} \sin \varphi d \varphi \\
& =\frac{52 \pi}{3} \int_{0}^{\pi} \sin \varphi d \varphi \\
& =\left.\frac{52 \pi}{3}(-\cos \varphi)\right|_{0} ^{\pi} \\
& =\frac{52 \pi}{3}(-\cos \pi+\cos 0) \\
& =\frac{104 \pi}{3}
\end{aligned}
$$

Recall that, when changing to spherical coordinates, we have $d V=\rho^{2} \sin \varphi d \rho d \theta d \varphi$. Since the bounds on the integral define the region between the sphere of radius 1 and the sphere of radius 3 , the integral gives the volume of this "spherical shell" (or 3 dimensional annulus if you like). Described explicitly, the region would be:

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid 1 \leq x^{2}+y^{2}+z^{2} \leq 9\right\}
$$

